An Unconditionally Stable, Positivity-Preserving Splitting Scheme for Nonlinear Black-Scholes Equation with Transaction Costs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unconditionally Stable, Positivity-Preserving Splitting Scheme for Nonlinear Black-Scholes Equation with Transaction Costs

This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for ...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Option pricing with transaction costs and a nonlinear Black-Scholes equation

In a market with transaction costs, generally, there is no nontrivial portfolio that dominates a contingent claim. Therefore, in such a market, preferences have to be introduced in order to evaluate the prices of options. The main goal of this article is to quantify this dependence on preferences in the specific example of a European call option. This is achieved by using the utility function a...

متن کامل

unconditionally stable difference scheme for the numerical solution of nonlinear rosenau-kdv equation

in this paper we investigate a nonlinear evolution model described by the rosenau-kdv equation. we propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of o(τ2 + h2). furthermore we show the existence and uniqueness of numerical solutions. comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Scientific World Journal

سال: 2014

ISSN: 2356-6140,1537-744X

DOI: 10.1155/2014/525207